

(b) (i) 5 marks Att 2

$$\frac{1}{(3x-4)(2x-3)} = 2x-3$$
II
$$\frac{2x-3}{3x-4/6x^2-17x+12} = \frac{6x^2-8x}{-9x+12} = \frac{9x+12}{0}$$
III
$$(6x^2-17x+12) \div (3x-4) \\
(6x^2-9x-8x+12) \div (3x-4) \\
(6x^2-9x-8x+12) \div (3x-4) \\
[(3x-4)(2x-3)] \div (3x-4) \\
= 2x-3$$
IV
$$(6x^2-17x+12) \div (3x-4) \\
(6x^2-8x-9x+12) \div (3x-4) \\
(6x^2-8x-9x+12) \div (3x-4) \\
(6x^2-8x-9x+12) \div (3x-4) \\
[(2x-3)(3x-4)] \div (3x-4) \\
[(2x-3)(3x-4)] \div (3x-4) \\
= 2x-3$$

(b) (iii) 5 marks Att 2
$$\frac{5}{x-3} - \frac{3}{x-2} \\
= \frac{5(x-2) - 3(x-3)}{(x-3)(x-2)} \\
= \frac{5x - 10 - 3x + 9}{(x-3)(x-2)} \\
= \frac{2x - 1}{(x-3)(x-2)}$$
5m

(a)
$$15 \text{ marks}$$
 Att 5

(a) $4x + 3 = 11$
 $4x = 11 - 23$
 $4x = -12$
 $4x = -3$

or
 $4x = -3$
 $11 - 23 = -12$
 $-12 \div 4 = -3$

b(ii) 10 marks Att 3

(ii)
$$x + y = 40 \times 3$$

 $5x - 3y = 56$

$$3x + 3y = 120$$

$$5x - 3y = 56$$

 $8x = \frac{176}{8} = 22$ Correct-merits full marks, not asked for number incorrect

Question 6

c(i) 5 marks Att 2

Week 1 (i) $\frac{\in 2000}{x}$

c(ii) 5 marks Att 2

Week 2

$$\frac{\text{€2000}}{x+1}$$

c(iii) 5 marks Att 2

(iii) $\frac{2000}{x} - \frac{2000}{x+1} = 100$ or equivalent

c(iv) 5 marks Att 2

(iv) $\frac{2000}{x} - \frac{2000}{x+1} = 100$ 2000(x+1) - 2000x = 100(x)(x+1) $2000x + 2000 - 2000x = 100x^2 + 100x$ $100x^2 + 100x - 2000 = 0$ $x^2 + x - 20 = 0$ (x+5)(x-4) = 0 $x = -5 \quad \text{or } x = 4$

(a) 5 marks Att 2
(a) 2x + 2w = p

(a) 2x + 2w = p2x + 2w = 242w = 24 - 2xw = 12 - x

b(i) 5 marks Att 2

Inner section length =x-2

Inner section width = 12-x-2 or 10-x

b(ii) 5 marks Att 2

Area = xw (lb) or Factorises = (x-2)(10-x) $-x^2 + 12x - 20 = (x-2)(-x+10) = lw$ = $-x^2 + 12x - 20$

Question 8

(i)
Method I Method II Method III

 $(4x-1)(7x+1) 28x^2 - 7x + 4x - 1 4x - 1 7x(4x-1) + 1(4x-1) (4x-1)(7x+1) 7x + 1$

(4x-1)(7x+1)

(ii) Solve $\frac{-47x-30}{7} = x^2$.

b(ii)

 $\frac{-47x - 30}{7} = x^{2}$ $-47x - 30 = 7x^{2}$ $7x^{2} + 47x + 30 = 0$ (7x + 5)(x + 6) = 0 $(7x + 5) = 0 \quad (x + 6) = 0$ $7x = -5 \quad x = -6$ $x = -\frac{5}{7}$ Formula

(i) $\frac{1}{2x-3} - \frac{1}{x+3}$ $= \frac{1(x+3) - 1(2x-3)}{(2x-3)(x+3)}$ $\frac{x+3-2x+3}{(2x-3)(x+3)}$ $= \frac{6-x}{(2x-3)(x+3)}$

Question 10

10 marks Att 3 (i) $x = \frac{1}{2} = 0.5$ Method I Method II Method Π $\frac{3}{x+2} - \frac{1}{2x+4}$ $\frac{5x+10}{(x+2)(2x+4)}$ $= \frac{3}{\frac{1}{2}+2} - \frac{1}{2(\frac{1}{2})+4} \quad \text{or} \quad \frac{3}{0.5+2} - \frac{1}{2(0.5)+4}$ $\frac{5}{(2x+4)}$ or Equivalent $\frac{3}{2.5} - \frac{1}{5}$ $=\frac{3}{2\frac{1}{2}} - \frac{1}{1+4}$ $\frac{5}{\left(2\left(\frac{1}{2}\right)+4\right)}$ $=\frac{6}{5}$ $-\frac{1}{5}=\frac{5}{5}$ $1 \cdot 2 - 0 \cdot 2$

b(ii) $\frac{2x^2 - 3x + 7}{3x - 2 \sqrt{6x^3 - 13x^2 + 27x - 14}}$ $\frac{6x^3 - 4x^2}{-9x^2 + 27x}$ $\frac{-9x^2 + 6x}{21x - 14}$ 21x - 14

(b) (ii)	10 marks			Att 3	
Ø					
I					
Brand		gram/pkt	Price/gram		
A	3×100	300	135	0 · 45	
			300		
В	6×100	600	240	0 · 40	<u>B</u>
			600		Cheapest
С	4×125	500	238	0.476	
			500		
II					
Brand		Price/bar	Price/gram		
A	135	45	45	0 · 45	
	3		100		
В	240	40	40	0 · 40	<u>B</u>
	6		100		Cheapest
С	238	59.5	59.5	0.476	
	4		125		

 		π
		60:32 = x:8
	$\frac{\text{Work hours to build a cabin}}{\text{Hours}} = \frac{8 \times 60}{32} = 15$	$\frac{60}{32} = \frac{x}{8}$
		$1 \cdot 875 = \frac{x}{8}$
		<i>x</i> = 15

Question 13

(a) 10 marks Att 3 (2x-3)(4-5x) 2x(4-5x)-3(4-5x) $8x-10x^2-12+15x$ $-10x^2+23x-12$

Question 14

(c) (i) 10 marks Att 3

- **3(c) (i)** A swimming pool can be filled by a large pipe operating alone in 4 hours. What fraction of the pool can be filled by this pipe in 1 hour?
- (c) (i) $\frac{10 \text{ marks}}{\text{Fraction of the pool}} = \frac{1}{4}$

Ø

I

Large pipe delivers $\frac{1}{4}$ of Volume /hour.

Small pipe delivers $\frac{1}{x}$ of Volume/hour.

Together they deliver $\frac{1}{4} + \frac{1}{x}$ of Volume /hour

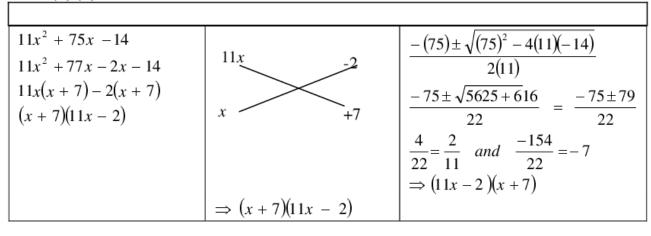
II

L.C.M of 4 and x is 4x.

In 4x hours the Large Pipe will fill the pool x times In 4x hours the Small Pipe will fill the pool 4 times In 4x hours Both Pipes will fill the pool x+4 times

In 1 hour Both Pipes will fill $\frac{x+4}{4x}$ of the pool.

(c) (iii)	5 marks	Att 2
£		
I	II	III
$3\left(\frac{1}{4} + \frac{1}{x}\right) = 1$	$\frac{1}{4} + \frac{1}{x} = \frac{1}{3}$	3 hours large pipe $\rightarrow \frac{3}{4}$ of pool
$\Rightarrow \frac{3}{4} + \frac{3}{x} = 1$	$\Rightarrow \frac{x+4}{4x} = \frac{1}{3}$	3 hours small pipe $\rightarrow \frac{1}{4}$ of pool
$\Rightarrow \frac{3}{x} = \frac{1}{4}$	$\Rightarrow 3x + 12 = 4x$ $\Rightarrow x = 12$	$\Rightarrow \frac{1}{4}$ pool in 3 hours
$\Rightarrow x = 12$		⇒ 1 pool in 12 hours


(c) (i)	10 marks			Att 3
	$(x+1)^2 + (x+2)^2$	=	$(2x+2)^2$	

(c) (ii)	10(5,5) marks		Att (2,2)
Ø			
5 marks	Att 2	5 marks	Att 2
Establishing quadratic equati	ion	Solving quadratic equation	
$(2x+2)^2 = (x+1)^2 + (x+2)^2$		$-(2)\pm\sqrt{(2)^2-4(2)(-1)}$	
$4x^2 + 8x + 4 = x^2 + 2x + 1 + x^2 + 4$	4x+4	2(2)	
$2x^2 + 2x - 1 = 0$		$\frac{-(2)\pm\sqrt{4+8}}{-(2)\pm\sqrt{12}} = \frac{-2\pm\sqrt{12}}{-(2)\pm\sqrt{12}} = \frac{-2\pm\sqrt{12}}{-$	3 · 464101615
		4 4	4
		$= \frac{-2+3\cdot 464101615}{4} $ and $\frac{-2-3\cdot 4}{4}$	464101615 4
		$= \frac{1.464101615}{4} $ and $\frac{-5.464101615}{4}$	5
		=0.3660254038 and -1.3660254	104
		$=\underline{0\cdot37}$ and $\underline{-1\cdot37}$	

(b) (i)	10 marks	Att 3
	3x - y + 2	
	$3(2t-1)-\left(\frac{2}{3}t+2\right)+2$	
	$6t - 3 - \frac{2}{3}t - 2 + 2$	
	$\frac{16}{3}t - 3$ or $5\frac{1}{3}t - 3$ or $\frac{16t - 9}{3}$	

(b) (ii)	10 marks	Att 3
£		
	3x - y + 2 = 0	
	$\frac{16}{3}t - 3 = 0$	
	16t - 9 = 0	
	$t = \frac{9}{16}(0.5625)$	

(b) (i)	5 marks	Att 2
	(5x - 6y)(5x + 6y)	

(b) (iii) 10 marks Att 3

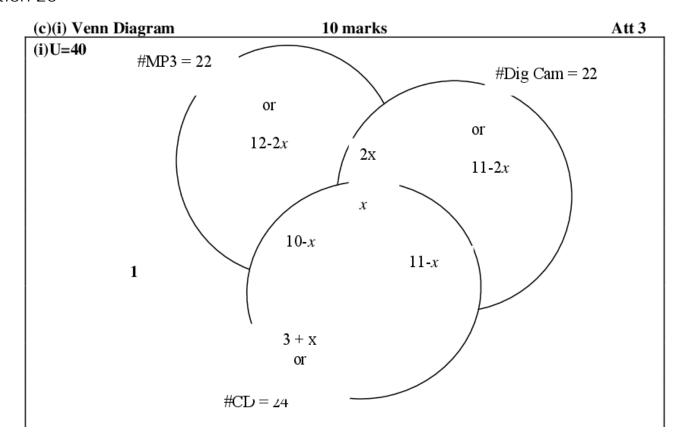
I II

$$(3-4x)^2 - (3-5x)^2 \qquad (3-4x)^2 - (3-5x)^2 \\
9-24x+16x^2 - (9-30x+25x^2) \qquad [(3-4x)-(3-5x)][(3-4x)+(3-5x)] \\
9-24x+16x^2 - 9+30x-25x^2 \qquad (3-4x-3+5x)(3-4x+3-5x) \\
6x-9x^2 \qquad (x)(6-9x)$$

(a) 10 marks Att 3

$$\frac{\frac{x+7}{5} + \frac{3-x}{4}}{\frac{4(x+7)+5(3-x)}{20}}$$

$$\frac{4x+28+15-5x}{20}$$


$$\frac{43-x}{20}$$

(c) (i) 15 marks Att 5

(C) (I)	is marks Au s
≤	
Ι	II
6 6 5	6 6 5
$\frac{6}{x} + \frac{6}{x+2} = \frac{5}{2}$	$\frac{6}{x} + \frac{6}{x+2} = \frac{5}{2}$
$\frac{6(x+2)+6(x)}{x(x+2)} = \frac{5}{2}$	
$\frac{1}{x(x+2)} = \frac{1}{2}$	$\frac{6(x+2)(2)+6(x)(2)-5(x)(x+2)}{x(x+2)(2)}=0$
6x+12+6x 5	$\frac{1}{x(x+2)(2)} \equiv 0$
$\frac{6x+12+6x}{x^2+2x} = \frac{5}{2}$	
12x+12 5	$12x+24+12x-5x^2-10x$
$\frac{12x+12}{x^2+2x} = \frac{5}{2}$	$\frac{12x + 24 + 12x - 5x^2 - 10x}{x(x+2)(2)} = 0$
$5x^2 + 10x = 24x + 24$	$5x^2 - 14x - 24 = 0$
$5x^2 - 14x - 24 = 0$	(5x+6)(x-4)=0
(5x+6)(x-4) = 0	5x+6=0 and $x-4=0$
5x+6=0 and $x-4=0$	$\Rightarrow x = -\frac{6}{5} \text{ and } x = 4$
6 , ,	$\Rightarrow x = -\frac{1}{5} \text{ and } x = 4$
$\Rightarrow x = -\frac{6}{5}$ and $x = 4$	
-	'

(c) (ii) 5 marks Att 2

£		
I	II	III
x=2t-1	Let $x + 2 = 2t + 1$	$\frac{6}{2t-1} + \frac{6}{2t+1} = \frac{5}{2}$
$-\frac{6}{5} = 2t - 1$	$Let \ \overline{x+2} = 2t+1$	2t-1 $2t+1$ 2
	$\Rightarrow x = 2t - 1$	$\frac{6(2t+1)(2)+6(2t-1)(2)-5(2t-1)(2t+1)}{2(2t-1)(2t+1)}=0$
10t - 5 = -6	6 24 1	2(2t-1)(2t+1)
10t = -1	$-\frac{6}{5} = 2t - 1$	$24t + 12 + 24t - 12 - 20t^2 + 5 = 0$
Let $t = -\frac{1}{1}$	10t - 5 = -6	$20t^2 - 48t - 5 = 0$
10	10t = -1	(10t+1)(2t-5)=0
and	$t = -\frac{1}{10}$	
4 = 2t - 1	10	$10t = -1 \Rightarrow t = -\frac{1}{10}$ and $2t = 5 \Rightarrow t = \frac{5}{2}$
2t = 5	and	
$t=\frac{5}{2}$	4 = 2t - 1	
$l = \frac{l - \overline{2}}{2}$	2t=5	
	$t=\frac{5}{}$	
	$l = \frac{1}{2}$	
I		

 c(i) Finding x
 5 marks
 Att 2

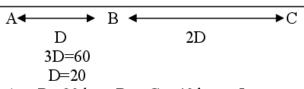
 Finding x
 (i)
 1 + 24 + 12 - 2x + 2x + 11 - 2x = 40

 48 - 2x = 40 2x = 8

 x = 4 x = 4

c (ii) 5 marks Att 2 (ii) 12-2x+11-2x+x+3=26-3x or 12-2x=12-8=4 x=4 11-2x=11-8=3 26-12=14 x+3=7 4+3+7=14% $\frac{14}{40} \times 100 = 35\%$

b(ii) 5 marks Att 2


(ii)
$$(7x - 2)(7x + 2) - (5y - 2)(5y + 2)$$

$$= 49x^2 - 4 - [25y^2 - 4]$$

$$= 49x^2 - 4 - 25y^2 + 4$$

$$= 49x^2 - 25y^2$$

$$= (7x - 5y)(7x + 5y)$$

A to B = 20 km B to C = 40 km I

Time from A to B =
$$\frac{20}{x}$$

Time from B to C $\frac{40}{x+20}$

$$\frac{20}{x} + \frac{40}{x + 20} = \frac{50}{60} = \frac{5}{6}$$

$$20(6)(x+20) + 40(6)(x) = 5(x)(x+20)$$

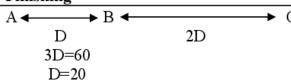
$$120x + 2400 + 240x = 5x^2 + 100x$$

$$5x^2 - 260x - 2400 = 0$$

$$x^2 - 52x - 480 = 0$$

$$(x-60)(x+8)=0$$

x = 60 km/h


Table

	A→B	В→С	Marks
D	20	40	5 I
S	x	x+20	or 5 II
T	20	40	
	\overline{x}	$\overline{x+20}$	

5 marks Att 2 Finishing

III

5 Marks

A to B = 20 km B to C = 40 km

Time from A to B =
$$\frac{20}{x}$$

Time from B to C $\frac{40}{x+20}$

$$\frac{20}{x} + \frac{40}{x+20} = \frac{50}{60} = \frac{5}{6}$$
$$20(6)(x+20) + 40(6)(x) = 5(x)(x+20)$$
$$120x + 2400 + 240x = 5x^2 + 100x$$

$$5x^2 - 260x - 2400 = 0$$

$$x^2 - 52x - 480 = 0$$

$$(x-60)(x+8)=0$$

x = 60 km/h

III

5 Marks

	A→B	В→С	Marks
D	20	40	5 I
S	x	x+20	or 5 II
T	20	40	
	<u></u>	${x+20}$	

Table

5 marks c (i) Att 2

(i) Solve the equation
$$3a^2 + 5a = 2$$
.

(i)

$$3a^2 + 5a = 2$$
 $3a^2 + 5a = 2$

$$3a^2 + 5a - 2 = 0$$

$$3a^2 + 5a - 2 = 0$$

$$(3a-1)(a+2) = 0$$
 Factorising by Guide Number

$$3a-1=0$$
 or $a+2=0$ $3a^2+5a-2$ GN =-6

$$a = \frac{1}{3}$$
 or $a = -2$ $3a^2 - a + 6a - 2$ $a(3a-1) + 2(3a-1)$ $(3a-1)(a+2)$

(3a-1)(a+2) = 0 as before

5 marks c(ii) Att 2

Method I Method II (ii)

$$3\left(\frac{1}{t}\right)^{2} + 5\left(\frac{1}{t}\right) = 2.$$

$$\mathbf{From} \quad \mathbf{c(i)}$$

$$3\left(\frac{1}{t}\right)^{2} + 5\left(\frac{1}{t}\right) = 2.$$

$$\frac{3}{t^{2}} + \frac{5}{t} - 2 = 0 \quad \times t^{2}$$

$$\frac{1}{t} \equiv a \qquad \qquad \frac{t^2}{3+5t-2t^2} = 0$$

$$\frac{1}{t} = a 3 + 5t - 2t^{2} = 0$$

$$\frac{1}{t} = \frac{1}{3} \text{or} \frac{1}{t} = -2 2t^{2} - 5t - 3 = 0$$

$$t = 3 \text{or} t = -\frac{1}{2} t = -\frac{1}{2} \text{or} t = 3$$

5 marks c(iii) Att 2

 $3\left(\frac{1}{t}\right)^2 + 5\left(\frac{1}{t}\right) = 2.$

(iii)

$$t = 3 t = -\frac{1}{2}$$

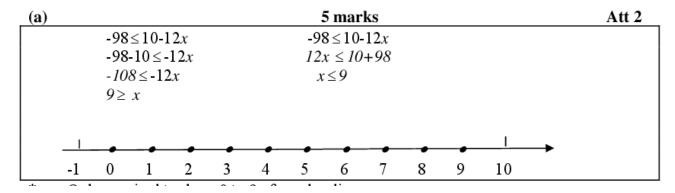
$$3\left(\frac{1}{3}\right)^{2} + 5\left(\frac{1}{3}\right) = 2$$

$$3\left(\frac{1}{-\frac{1}{2}}\right)^{2} + 5\left(\frac{1}{-\frac{1}{2}}\right) = 2$$

$$2=2 2=2$$

(b) (i) 5 marks Att 2

(i) I
$$\frac{2x^2 + 4x - 30}{x - 3} = \frac{2(x^2 + 2x - 15)}{x - 3}$$
 or $\frac{2(x + 5)(x - 3)}{x - 3}$ or $2(x + 5)$

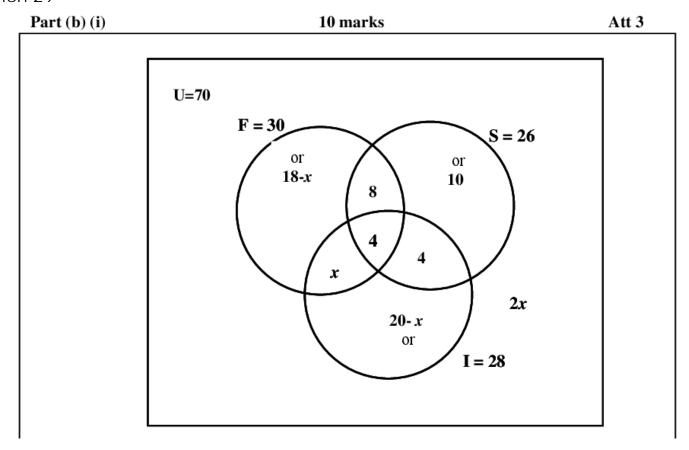

II $\frac{2x^2 + 4x - 30}{x - 3} = \frac{(2x + 10)(x - 3)}{x - 3}$ or $2x + 10$

III $\frac{2x + 10}{2x^2 + 4x - 30}$

$$\frac{2x + 10}{2x^2 - 6x}$$

$$\frac{10x - 30}{00}$$

Question 25



(c)(ii) 5 marks Att 2

(ii)
$$(\sqrt{6} - 2\sqrt{3})(5\sqrt{3} - 3\sqrt{6}) = \sqrt{6}(5\sqrt{3} - 3\sqrt{6}) - 2\sqrt{3}(5\sqrt{3} - 3\sqrt{6})$$
 $= 5\sqrt{18} - 3\sqrt{36} - 10\sqrt{9} + 6\sqrt{18}$
 $= 5.3\sqrt{2} - 18 - 30 + 6.3\sqrt{2}$
 $= 15\sqrt{2} - 48 + 18\sqrt{2}$
 $= 33\sqrt{2} - 48 \text{ or } -48 + 33\sqrt{2}$

(i)
$$\frac{10}{7} = 1.428571 \qquad \sqrt{2} = 1.41421 \qquad \frac{7}{2\sqrt{6}} = \frac{7\sqrt{6}}{12} = 1.42886 \qquad (1.19)^2 = 1.4161$$

$$\sqrt{2}, \qquad (1.19)^2, \qquad \frac{10}{7}, \qquad \frac{7}{2\sqrt{6}}$$
b b b b b b (1.41421) (1.4161) (1.428571) (1.42886)
A B C D

(ii)
$$26 + (18 - x) + x + (20 - x) + 2x = 70 \text{ or equivalent}$$

$$64 + x = 70$$

$$x = 70 - 64$$

$$x = 6$$

Number who travelled to, France only 18-6 = 12

Question 30

Part (c)(i) 5 marks Att 2

(i)
$$\frac{540}{x}$$

Part (c)(ii) 5 marks Att 2

(ii)
$$\frac{300}{x+1}$$
 or $90 - \frac{540}{x}$

Part (c)(iii) 5 marks Att 2

(iii)
$$\frac{540}{x} + \frac{300}{x+1} = 90 \qquad \text{or equivalent}$$

Part (c)(iv) 5 marks Att 2

(iv)
$$\frac{540}{x} + \frac{300}{x+1} = 90$$

$$540(x+1) + 300x = 90(x^2 + x)$$

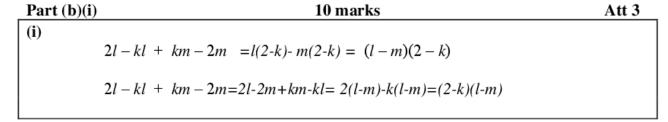
$$540 + 540x + 300x = 90x^2 + 90x$$

$$90x^2 - 750x - 540 = 0$$

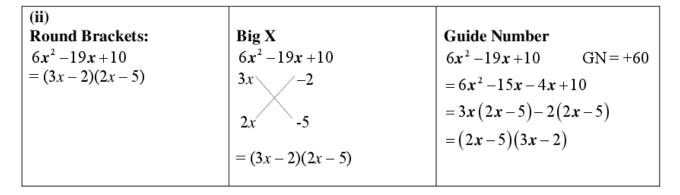
$$3x^2 - 25x - 18 = 0$$

$$(3x+2)(x-9) = 0$$

$$x = 9$$


$$\frac{540}{9} = 60$$
Number of days = 60

Part (a) 10 marks Att 3 x° Sunday (a) Monday = $x^{\circ}+3^{\circ}$ $= x^{\circ} + 3^{\circ} + 3^{\circ} = x^{\circ} + 6^{\circ}$ Tuesday Wednesday $= x^{\circ} + 6^{\circ} - 4^{\circ} = x^{\circ} + 2^{\circ}$ Thursday $= x^{\circ} + 2^{\circ} - 4^{\circ} = x^{\circ} - 2^{\circ}$ $= x^{\circ} - 2^{\circ} - 4^{\circ} = x^{\circ} - 6^{\circ}$ Friday or $x^{\circ}+2(3^{\circ})-3(4^{\circ}) = x^{\circ}+6^{\circ}-12^{\circ}=x^{\circ}-6^{\circ}$


Question 32

Part (b)(ii) 5 marks Att 2
(ii)
$$9x^2 - 16y^2 = (3x - 4y)(3x + 4y)$$

Question 33

Part (b)(ii) 5 marks Att 2

Part (b)(iii) 5 marks Att 2 (iii)
$$17x - 5x^2 = x(17 - 5x)$$

Part (c)(i) 10 marks Att 3

(i)
$$\frac{1}{(2x-3)} - \frac{1}{(2x+3)} = \frac{1(2x+3)-1(2x-3)}{(2x-3)(2x+3)} = \frac{2x+3-2x+3}{(2x-3)(2x+3)} = \frac{6}{(2x-3)(2x+3)}$$

Part (c)(ii)

10 marks

Att 3

$$\frac{6}{(2x-3)(2x+3)} = \frac{6}{7}$$

$$\frac{6}{4x^2 - 9} = \frac{6}{7}$$

$$24x^2 - 54 = 42$$

$$24x^2 = 96$$

$$x^2 = 4$$
 or $x^2 - 4 = 0$

or

Formula

$$x = \pm 2$$
 $(x-2)(x+2) = 0$

$$x = 2 \text{ or } x = -2$$

Question 35

Part (b)(i)

10marks

Att 3

(i)
$$x^{2} - 4x - 8 = 0$$

$$a = 1 \quad b = -4 \quad c = -8$$

$$\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot - 8}}{2 \cdot 1} = \frac{4 \pm \sqrt{16 + 32}}{2} = \frac{4 \pm \sqrt{48}}{2}$$

$$= \frac{4 \pm 4\sqrt{3}}{2} = 2 \pm 2\sqrt{3}$$

Question 36

(b) (ii)

10 marks

Att 3

(ii) \$4620 = €
$$\left(\frac{4620}{1.32}\right)$$

= €3500
Profit made = €3500 - €2985
= €515

Question 37

(c) (ii)

5 marks

Att 2

(ii)
$$\frac{3\cdot 6}{x+30}$$

(c) (iii)

5 marks

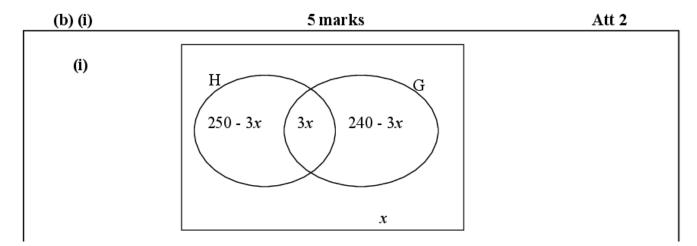
Att 2

(iii)
$$\frac{3.6}{x} - \frac{3.6}{x+30} = 0.01$$
 or equivalent.

(iv)
$$\frac{3.6}{x} - \frac{3.6}{x+30} = 0.01$$

$$\frac{3.6(x+30) - 3.6(x)}{(x)(x+30)} = 0.01$$

$$3.6x+108 - 3.6x = 0.01(x)(x+30)$$

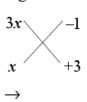

$$0.01x^2 + 0.3x - 108 = 0$$

$$x^2 + 30x - 10800 = 0$$

$$(x-90)(x+120) = 0 \qquad x = 90. \qquad \text{Grams during promotion} = 120.$$

$$7x + 2(4x) = €202 · 50
7x + 8x = €202 · 50
15x = €202 · 50
x = €13 · 50$$

$$7x + 2y = €202 · 50
8x - 2y = 0
15x = €202 · 50
x = €13 · 50$$


(b) (iii) 5 marks Att 2

(iii)
$$490 - 2x = 430 \\ - 2x = -60 \\ x = 30$$

Question 40

(b) (i) 10 marks Att 3

(i) Round Brackets: or Big 'X':

(3x-1)(x+3)

(3x-1)(x+3)

Check

(i) $3x^2$ term

(ii) - 3 term

(iii) middle term

(b) (ii) 5 marks Att 2

(ii)
$$3p - c + 3pc - c^{2}$$
$$= 1(3p - c) + c(3p - c)$$
$$= (3p - c)(1 + c)$$

(b) (iii) 5 marks Att 2

(iii)
$$(2x-1)^2 - (x-1)^2$$

$$= [(2x-1) - (x-1)] [(2x-1) + (x-1)]$$
 or
$$(2x-1)(2x-1) - (x-1)(x-1)$$

$$= (2x-1-x+1) (2x-1+x-1)$$

$$= (4x^2 - 4x+1) - (x^2 - 2x+1)$$

$$= (x) (3x-2)$$

$$= 3x^2 - 2x$$

$$= 3x^2 - 2x$$

Question 41

(c) (i) 15 marks Att 5

(i)
$$\frac{1(x+1)+1(x-1)}{(x-1)(x+1)} = \frac{x+1+x-1}{(x-1)(x+1)} = \frac{2x}{(x-1)(x+1)}$$

(c) (ii)
$$\frac{2x}{(x-1)(x+1)} = 3$$

$$2x = 3(x-1)(x+1)$$

$$2x = 3x^2 - 3$$

$$3x^2 - 2x - 3 = 0$$

$$x = \frac{2 \pm \sqrt{4+36}}{6} = \frac{2 \pm \sqrt{40}}{6}$$

$$x = \frac{2 \pm 2\sqrt{10}}{6}$$

$$x = \frac{1}{3} \pm \frac{1}{3}\sqrt{10}$$

(a) 10 marks Att 3

$$f(-3) = (-3)^2 + (-3) - 7$$

= 9 - 3 - 7
= -1

(c) (i) 10 marks Att 3

I

$$£2030 - £2000 = £30$$
 $£30 = 75\%$
 $^{30}/_{75} = 0 \cdot 4 = 1\%$
 $0 \cdot 4 \times 100 = £40 = Interest$
 $^{40}/_{2000} \times ^{100}/_{1}$
Rate of interest $r = 2\%$

II

 $£2000 \times ^{r}/_{100} = 20r$
 $20 r \times ^{25}/_{100} = ^{500r}/_{100} = 5r$
 $20r \cdot 5r = 15r$
 $15 r = 30$
 $r = 2 \%$

(b) (i) 15(10, 5) marks Att(3, 2) 14x + 10y = 555 12x + 5y = 390

(b) (ii) 10 marks Att 3 14x + 10y = 55512x + 5y = 390(-2)3 m 14x + 10y = 555-24x - 10y = -780-10x = -2254m 7 m*x* = €22·50 14(22.5) + 10y = 555315 + 10y = 55510y = 240y=€24 10 m II $14x + 10y = 555 \times 6$ $12x + 5y = 390 \times -7$ 3m 86x + 60y = 3330-84x - 35y = -273025y = 6004m $y = \ \ \in 24.00$ 7m14x + 10(24) = 55514x + 240 = 55514x = 315*x* = €22·50 10m

III

$$14x + 10y = 555$$

$$12x + 5y = 390$$

$$14x = 555 - 10y$$

$$x = \frac{555 - 10y}{14}$$

$$12\left(\frac{555 - 10y}{14}\right) + 5y = 390 \quad (\times 14)$$

$$6660 - 120y + 70y = 5460$$

$$-50y = -1200$$

$$y = £24 - 00$$

$$x = \frac{555 - 10(24)}{14}$$

$$x = £22 - 50$$

$$10m$$
IV

$$14x + 10y = 555$$

$$12x + 5y = 390$$

$$5y = 390 - 12x$$

$$y = \frac{390 - 12x}{5}$$

$$14x + 10\left(\frac{390 - 12x}{5}\right) = 555 \quad (\times 5)$$

$$70x + 3900 - 120x = 2775$$

$$-50x = -1125$$

$$x = £22 - 50$$

$$y = \frac{390 - 12(22.5)}{5}$$

$$y = £24 - 50$$

$$10m$$

(c) (i) $\frac{5 \text{ marks}}{x+1}$ Att 2

(c) (ii) $\frac{5 \text{ marks}}{x} - \frac{300}{x+1} = 10$ (or equivalent, based on (c) (i))

(c) (iii) (5, 5) marks Att 2,2 300(x+1)-300x= 10(x)(x+1) $300\hat{x} + 300 - 300x$ = 10(x)(x+1)300 10 (x)(x+1)300 = 10(x)(x+1) $300 = 10(x^2 + x)$ 2m $30 = x^2 + x$ or $x^2 + x - 30 = 0$ or $300 = 10x^2 + 10x$ 5m $x^2 + x - 30 = 0$ (x+6)(x-5)=0x = -6, x = 54m Solution: x =5. 5m

(c) (i)
$$\frac{3}{x+1} - \frac{2}{x+4}$$

$$\frac{3(x+4) - 2(x+1)}{(x+1)(x+4)}$$

$$\frac{3x+12 - 2x - 2}{(x+1)(x+4)}$$

$$\frac{x+10}{(x+1)(x+4)}$$

$$\frac{x+10}{x^2+5x+4}$$

(c) (ii)		10(5, 5) marks	Att(2, 2)	
5 marks	Att2	5 marks	Att2	
Establishing quadratic equation		Solving quadratic equ	Solving quadratic equation	
I $\frac{x+x}{x^2+x}$	$\frac{10}{5x+4} = \frac{1}{3}$	a=1; b=2; c=-26		
$3(x+10) = 1(x+1)(x+1)$ $3x + 30 = x^2 + x + 4$	•	$x = \frac{-2 \pm \sqrt{(2)}}{2}$	$\frac{2)^2 - 4(1)(-26)}{2(1)}$	
$x^2 + 2x - 26 = 0$	5m	$x = \frac{-2}{}$	$\frac{\pm\sqrt{4+104}}{2}$	
II		$x = \frac{-1}{2}$	$\frac{2\pm\sqrt{108}}{2}$	
$\frac{3}{x+1}$	$\frac{2}{x+4} = \frac{1}{3}$	x = -	$\frac{2 \pm 6\sqrt{3}}{2}$	
3(3)(x+4)-2(3)(x+4)	(x+1) = (x+1)(x+4)	$-1 \pm 3\sqrt{3}$ or	$1 \pm 3\sqrt{3}$ (see *)	
$9x + 36 - 6x - 6 = x^2$	+x+4x+4		5m	
$x^2 + 2x - 26 = 0$	5m			

$$f(x) = -x^{2} - 4x + 5$$

$$f(x+1) = -(x+1)^{2} - 4(x+1) + 5$$

$$-(x^{2} + 2x + 1) - 4x - 4 + 5$$

$$-x^{2} - 2x - 1 - 4x + 1$$

$$-x^{2} - 6x$$

$$f(x) = f(x+1)$$

$$-x^{2} - 4x + 5 = -x^{2} - 6x$$

$$-x^{2} - 4x + 5 + x^{2} + 6x = 0$$

$$2x + 5 = 0$$

$$2x = -5$$

$$x = -\frac{5}{2}$$

(b) (i) 5 marks Att 2

$$x^2 - 1 =$$
 Given
 $x^2 - 1^2 =$ 2m
 $(x - 1)(x + 1)$ 5 m

(b) (ii) 10 marks Att 3 a x - 3 - a + 3 xGiven a x - a + 3 x - 33m a(x-1)+3(x-1)7m(a+3)(x-1)10m a x - 3 - a + 3 xGiven ax + 3x - a - 33m x(a+3)-1(a+3) 7m (a+3)(x-1)

(b) (iii) 5 marks Att 2

I
$$6x^2 + x - 35$$

$$(2x + 5) (3x - 7)$$
II
$$6x^2 + x - 35$$

$$6x^2 - 14x + 15x - 35$$

$$2x (3x - 7) + 5 (3x - 7)$$

$$(2x + 5) (3x - 7)$$
III
$$6x^2 + x - 35$$

$$6x^2 + 15x - 14x - 35$$

$$3x (2x + 5) - 7x (2x + 7)$$

$$(2x + 5) (3x - 7)$$

(c) (i)	5 marks	Att 2
200		
x		

(c) (ii) 5 m arks Att 2 $\frac{200}{x-3}$

(c) (iii) 10 (5,5) marks Att 2,2 Establish equation 200 = 15 2m $\frac{1}{x-3} - \frac{1}{x}$ 200 x - 200 (x - 3) = 15 x (x - 3)2m x(x-3) $200 x - 200 x + 600 = 15x^2 - 45 x$ 2m $600 = 15x^{2} - 45 x$ $15x^{2} - 45 x - 600 = 0$ $x^{2} - 3 x - 40 = 0$ 5m Solve (x-8)(x+5)=02m \rightarrow 8 and - 5 4m Solution: x = 85m

(b) (i) 10 marks Att3

$$\frac{(3x-7)(x+4)}{x+4}$$

$$= 3x - 7$$

$$\Pi
3x^2 + 5x - 28 \div x + 4
3x^2 + 12x - 7x - 28 \div x + 4
3x(x+4) + 7(x+4) \div x + 4
(3x-7)(x+4) \div x + 4
= 3x - 7$$

ΠI

Division to give answer 3x - 7

$$3x - 7$$

$$x + 4 \sqrt{3x^2 + 5x - 28}$$

$$\underline{3x^2 + 12x}$$

$$- 7x - 28$$

$$\underline{- 7x - 28}$$

$$0$$

$$\frac{4x+2}{5} - \frac{6-x}{3} = -5$$

$$\frac{3(4x+2)-5(6-x)}{15} = -5$$

$$3(4x+2)-5(6-x) = 15 (-5)$$

$$12x+6-30+5x = -75$$

$$17x-24 = -75$$

$$17x = -75+24$$

$$17x = -51$$

$$x = -51 \div 17$$

$$x = -3$$

${f II}$

$$\frac{4x+2}{5} - \frac{6-x}{3} = -5$$

$$\frac{(4x+2)(3)(5) - (6-x)(3)(5)}{5} = -5(3)(5)$$

$$3(4x+2) - 5(6-x) = 15 (-5)$$

$$12x+6-30+5x = -75$$

$$17x-24 = -75$$

$$17x = -75+24$$

$$17x = -51$$

$$x = -51 \div 17$$

$$x = -3$$

ΠI

$$\frac{4x+2}{5} - \frac{6-x}{3} = -5$$

$$3(4x+2) - 5(6-x) = (5)(3)(-5)$$

$$12x+6-30+5x = -75$$

$$17x-24 = -75$$

$$17x = -75+24$$

$$17x = -51$$

$$x = -51 \div 17$$

$$x = -3$$

I
$$\frac{a+5}{3} - \frac{a+4}{2}$$

$$\frac{24+5}{3} - \frac{44}{2}$$

$$\frac{54}{3} - \frac{44}{2}$$

$$\frac{54}{3} - \frac{44}{2}$$

$$\frac{11}{4} - 2\frac{1}{8}$$

$$= \frac{-3}{8}$$
II
$$\frac{a+5}{3} - \frac{a+4}{2}$$

$$\frac{2(a+5)-3(a+4)}{6}$$

$$\frac{2a+10-3a-12}{6}$$

$$\frac{a=\frac{1}{4}}{-\frac{1}{4}-2}$$

$$\frac{a=\frac{1}{4}}{6}$$

$$\frac{-2\frac{1}{4}-2}{6}$$

$$\frac{-2\frac{1}{4}}{6}$$

$$\frac{-3}{3}$$

(b)(i) 10 marks Att 3
$$\frac{4(x+2) - 5(x-1)}{(x-1)(x+2)}$$

$$\frac{4x+8-5x+5}{(x-1)(x+2)}$$

$$\frac{-x+13}{(x-1)(x+2)}$$

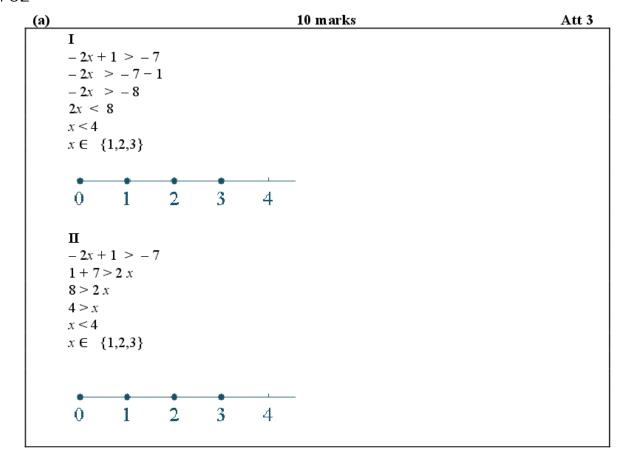
(b)(ii)
$$\frac{-x+13}{(x-1)(x+2)} = \frac{3}{2}$$

$$2(-x+13) = 3(x-1)(x+2)$$

$$-2x+26 = (3x-3)(x+2)$$

$$-2x+26 = 3x^2+3x-6$$

$$3x^2+5x-32=0$$
Equation 5m
$$\frac{-5 \pm \sqrt{25-4(3)(-32)}}{2(3)}$$


$$\frac{2(3)}{-5\pm\sqrt{25+384}}$$

$$6$$

$$\frac{-5\pm\sqrt{409}}{6}$$

$$\frac{-5\pm20\cdot22374842}{6}$$
and
$$\frac{15\cdot22374842}{6}$$

$$x = -4\cdot2$$
 and $x = 2\cdot5$ Solve 5m

