studyclix makes exams easier

Question 1

(c) Let f be the function $f: x \to 4x^2 + bx + c$, $x \in \mathbb{R}$ and $b, c \in \mathbb{Z}$. The points (2, 6) and (-1, 0) lie on the graph of f, as shown in the diagram.

- (i) \angle Find the value of b and the value of c.
- (ii) \mathscr{E} Solve f(x) = -6.

Question 2

(b) Let f be the function $f: x \to 5x - 4$ and g be the function $g: x \to 3x + 1$.

Using the same axes and scales, draw the graph of f and the graph of g, for $0 \le x \le 3$, $x \in \mathbb{R}$.

- (ii) From your graphs, write down the co-ordinates of the point of intersection of the two lines.
- (c) Let f be the function $f: x \to 2x^2 + x 15$.
 - (i) Solution The matter of the property of the first of the first of the property of the first of the first
 - (ii) So Use your graph to find the minimum value of f(x).
 - (iii) Solution Use your graph to find the range of values of x for which $f(x) \ge 0$.

Question 3

(c) Let f be the function $f: x \to 2x - 1$ and g be the function $g: x \to 4x - 4$.

Using the same axes and scales, draw the graph of f and the graph of g, for $0 \le x \le 2$, $x \in \mathbb{R}$.

- (ii) From your graphs, write down the co-ordinates of the point of intersection of the two lines.
- (iii)

 Check your answer to part (ii) by solving the simultaneous equations

$$y = 2x-1$$

$$y = 4x - 4.$$

(c) The diagram shows part of the graph of the function

$$f: x \to x^2 + bx + c$$
, where $x \in \mathbf{R}$ and $b, c \in \mathbf{Z}$.

The graph intersects the x-axis at (-1, 0) and (2, 0).

- (i) \angle Calculate the value of b and the value of c.
- (ii) \mathscr{E} (k, -k+14) is a point on the graph, where $k \in \mathbb{Z}$. Find the values of k.

Question 5

- (c) Let f be the function $f: x \to 1 3x$ and g be the function $g: x \to 1 x^2$.
 - (i) $\mathscr{E} \operatorname{Find} f(-2) \operatorname{and} g(5)$.
 - (ii) \mathbb{Z} Express f(x+1) in the form ax+b, a and $b \in \mathbb{Z}$.
 - (iii) Solve for x: f(x+1) = f(-2) + g(5).

Question 6

- (b) Let f be the function $f: x \to 5 3x 2x^2$ and g be the function $g: x \to -2x 1$.
 - Using the same axes and scales, draw the graph of f and the graph of g, for $-3 \le x \le 2$, $x \in \mathbb{R}$.
- (c) Use your graphs from part (b) to estimate:
 - (i) \mathscr{L} the maximum value of f(x)
 - (ii) \mathscr{L} the values of x for which f(x) = g(x)
 - (iii) \angle the range of values of x for which $f(x) \ge g(x)$.

Question 7

- (c) Let f be the function $f: x \to x^2 + bx + c$, $x \in \mathbb{R}$ and $b, c \in \mathbb{Z}$. The graph of f cuts the x axis at the points where x = -3 and x = 2.
 - (i) \mathbb{Z} Find the value of b and the value of c.
 - (ii) Simplify Find the value of x for which f(x) = f(x+2).

Question 8

- (b) Let f be the function $f: x \to x^2 + 5x$ and let g be the function $g: x \to x + 2$.
 - Using the same axes and scales, draw the graph of f and the graph of g, for $-5 \le x \le 1$, $x \in \mathbb{R}$.
- (c) Use your graphs from part (b) to estimate:
 - (i) \angle The minimum value of f(x)
 - (ii) Solution The values of x for which f(x) = g(x)
 - (iii) The range of values of x for which $f(x) \le g(x)$.

(c) The diagram below shows part of the graphs of the functions

$$f(x) = x^2 - 4x + 3$$
 and $g(x) = x + k$.

The graph of f(x) cuts the x axis at A and B.

The graphs of f(x) and g(x) intersect at A.

- (i) \angle Find the coordinates of A and the coordinates of B.
- (ii) \angle Find the value of k.
- (iii) \mathscr{L} Verify that f(x) and g(x) intersect also at the point (4, 3).

(b) Let f be the function $f: x \to 7x - x^2$.

 \mathbb{Z} Draw the graph of f for $0 \le x \le 7$, $x \in \mathbb{R}$.

(c) The formula for the height, y metres, of a golf ball above ground level x seconds after it is hit, is given by $7x - x^2$.

Use your graph from part (b):

- (i) so to find the maximum height reached by the golf ball
- (ii) so to estimate the number of seconds the golf ball was more than 2 metres above the ground.

The graph below represents the flight of another golf ball.

The flight of the golf ball is given by the formula $ax - x^2$, $x \in \mathbb{R}$.

(iii) \angle Find the value of a.