Question 1

(c) Let f be the function $f: x \rightarrow 4 x^{2}+b x+c, x \in \mathbf{R}$ and $b, c \in \mathbf{Z}$.

The points $(2,6)$ and $(-1,0)$ lie on the graph of f, as shown in the diagram.

(i) Find the value of b and the value of c.
(ii) Solve $f(x)=-6$.

Question 2

(b) (i) Let f be the function $f: x \rightarrow 5 x-4$ and g be the function $g: x \rightarrow 3 x+1$.

> Using the same axes and scales, draw the graph of f and the graph of g, for $0 \leq x \leq 3, x \in \mathbf{R}$.
(ii) From your graphs, write down the co-ordinates of the point of intersection of the two lines.
(c) Let f be the function $f: x \rightarrow 2 x^{2}+x-15$.
(i) Draw the graph of f for $-4 \leq x \leq 3, x \in \mathbf{R}$.
(ii) Use your graph to find the minimum value of $f(x)$.
(iii) Use your graph to find the range of values of x for which $f(x) \geq 0$.

Question 3

(c)

(i) Let f be the function $f: x \rightarrow 2 x-1$ and g be the function $g: x \rightarrow 4 x-4$.

Using the same axes and scales, draw the graph of f and the graph of g, for $0 \leq x \leq 2, x \in \mathbf{R}$.
(ii) From your graphs, write down the co-ordinates of the point of intersection of the two lines.
(iii) Check your answer to part (ii) by solving the simultaneous equations

$$
\begin{aligned}
& y=2 x-1 \\
& y=4 x-4
\end{aligned}
$$

Question 4

(c) The diagram shows part of the graph of the function

$$
f: x \rightarrow x^{2}+b x+c \text {, where } x \in \mathbf{R} \text { and } b, c \in \mathbf{Z} \text {. }
$$

The graph intersects the x-axis at $(-1,0)$ and $(2,0)$.
(i) Calculate the value of b and the value of c.
(ii) $(k,-k+14)$ is a point on the graph, where $k \in \mathbf{Z}$.

Find the values of k.

Question 5

(c) Let f be the function $f: x \rightarrow 1-3 x$ and g be the function $g: x \rightarrow 1-x^{2}$.
(i) Find $f(-2)$ and g (5).
(ii) Express $f(x+1)$ in the form $a x+b, a$ and $b \in \mathbf{Z}$.
(iii) Solve for $x: \quad f(x+1)=f(-2)+g(5)$.

Question 6

(b) Let f be the function $f: x \rightarrow 5-3 x-2 x^{2}$ and g be the function $g: x \rightarrow-2 x-1$. Using the same axes and scales, draw the graph of f and the graph of g, for $-3 \leq x \leq 2, x \in \mathbf{R}$.
(c) Use your graphs from part (b) to estimate:
(i) the maximum value of $f(x)$
(ii) the values of x for which $f(x)=g(x)$
(iii) the range of values of x for which $f(x) \geq g(x)$.

Question 7

(c) Let f be the function $f: x \rightarrow x^{2}+b x+c, x \in \mathbf{R}$ and $b, c \in \mathbf{Z}$.

The graph of f cuts the x axis at the points where $x=-3$ and $x=2$.
(i) Find the value of b and the value of c.
(ii) Find the value of x for which $f(x)=f(x+2)$.

Question 8

(b) Let f be the function $f: x \rightarrow x^{2}+5 x$ and let g be the function $g: x \rightarrow x+2$.

25 Using the same axes and scales, draw the graph of f and the graph of g, for $-5 \leq x \leq 1, x \in \mathbf{R}$.
(c) Use your graphs from part (b) to estimate:
(i) The minimum value of $f(x)$
(ii) The values of x for which $f(x)=g(x)$
(iii) The range of values of x for which $f(x) \leq g(x)$.

Question 9

(c)

The diagram below shows part of the graphs of the functions

$$
f(x)=x^{2}-4 x+3 \text { and } g(x)=x+k
$$

The graph of $f(x)$ cuts the x axis at A and B.
The graphs of $f(x)$ and $g(x)$ intersect at A.
(i) Find the coordinates of A and the coordinates of B.
(ii) Find the value of k.
(iii) Verify that $f(x)$ and $g(x)$ intersect also at the point $(4,3)$.

Question 10

(b) Let f be the function $f: x \rightarrow 7 x-x^{2}$.

D Draw the graph of f for $0 \leq x \leq 7, x \in \mathbb{R}$.
(c) The formula for the height, y metres, of a golf ball above ground level x seconds after it is hit, is given by $7 x-x^{2}$.
Use your graph from part (b):
(i) to find the maximum height reached by the golf ball
(ii) to estimate the number of seconds the golf ball was more than 2 metres above the ground.

The graph below represents the flight of another golf ball.
The flight of the golf ball is given by the formula $a x-x^{2}, x \in \mathbb{R}$.

(iii) Find the value of a.

